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Abstract. System software practitioners have largely recognized the difficulties
of specifying complex program behavior in the design of distributed systems. In
this paper, we present Moon, an experimental programming environment that
uses UML sequence diagrams to describe and integrate the ECA rules that gov-
emn distributed systems behavior. The programming environment provides the
means to interactively describe ECA rules and to visualize their effect. The
rules are compiled into common concurrent programming abstractions includ-
ing basic (i.e. send and receive) and structured (i.e. sequence and parallel) con-
structs to facilitate program execution and visualization. Among the contribu-
tions of this work, we emphasize the m-calculus foundation of the UML
sequence diagrams which reduces the complexity of rule-based descriptions by
introducing structuring notions of object encapsulation, sequential, parallel and
conditional composition of simpler rules. We also believe that Moon may pro-
vide the means to develop applications ranging from algorithmic visualization,
UML-based system development and also to prepare educational material of
computer science courses centered on standard UML diagrams and rule-based
reasoning

Keywords. UML, Visual Programming, Rule-based Programming, Program-
ming Environment

1 Introduction

The design and construction of concurrent programs in a distributed setting has been
largely recognized a complex undertaking. In this respect, rule-based programming
has been proposed to better our understanding of complex program behavior. Rule-
based specifications are used in reactive systems that are monitored for the occurrence
of events that may signal critical conditions. In rule-based systems, once an event is
detected, if the event parameters satisfy a condition, a specified action is performed to
handle the situation. The language construct that corresponds to this model of interac-
tion is called ECA-rule. The use of ECA-rules in distributed systems arise from the
fact that a distributed system is a reactive system whose behavior can be conducted by
the messages received (events) and by the messages sent as response (actions). ECA-
rules are the basis of ADM, an Active-Deductive Model that uses XML as data repre-
sentation and message exchange format in distributed applications [11]. ADM is a
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programming language aimed to coordinate software agents with proactive, rational
and social behavior. Tough ADM-rules constitute a powerful programming paradigm,
their interactions are very often difficult to understand because they are generally not
designed to be applied in a structured or hierarchical manner.
With the purpose of making rule interactions easier to understand, in this paper we
propose to use UML sequence diagrams to visualize rule definition, selection and
execution. We believe that rule definition can be easily understood by means of a
short UML sequence diagram that expose the event-condition-action structure of the
rule. Furthermore, rule selection and instantiation becomes more coherent as the col-
lection of sequence diagrams are identified by the events they handle. Finally, rule
execution may become more understandable because rules are grouped around objects
i ial or parallel manner.
" ?Jsrff%ﬁr:ately, pthe programming environments that have adopted UML diagram-
ming as the basis for its design methodology are used at best for the generation of
program skeletons in programming languages like Java and C++ because UML dia-
grams cannot be directly executed. Although replacing the textual_representqt:on of a
programming model for a visual one represents a sul'Jstant-lal step in abstfactu?g algo-
rithm design from program coding, program beha_wo:: still gannot be Y.suahzed di-
rectly from UML diagrams as the program execution is not integrated into the envi-
ronment. On the other hand, algorithm v'lsual:zatlon systems do not use standard
UML diagrams to visualize program behavior. _ _

In this work, we propose the construction of a programming environment that ad-
dresses the aforementioned problems. By integrating the visualization of program edi-
tion and execution, the programming environment offers a number of outstanding ad-

vantages from previous work:

e Priming algorithmic design over program coding.

e Abstracting algorithm description from programming languages and platforms

e Visualizing program behavior using standard, widely known and accepted UML

diagrams

Next, we outline the content of this paper. In section 2, we compare our proposal with
some related work in the areas of program visualization and UML diagramming tools.
In section 3, we briefly describe the Moon programming environment including its
overall architecture. In section 4, we present the visual and textual forms of the pro-
gramming language along with their formal specification. This section also shows the
translation schemes defined between the representations. In section 5, we informally
present the subset of the m-calculus used in this work as a specification language and
also discuss how it is used to describe ECA rules. In section 6, we comment about the
translation schemes, and finally, in section 7, we present our concluding remarks.

2 Related Work

Knowlton’s video “Sorting out Sorting” was probably the first dynamic animation of
a data structure algorithm produced in 1981. Since then, a number of algorithm visu-
alization systems have been developed. According to their interaction, they can be
classified in two groups. The first group allows only algorithm visualization with no
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user interaction (BALSA[2], TANGOI[2], JAWAA[1], GAIGS[2]), while the second
group characterizes by their pleasant user guidance (Leonardo Web[1], ALICE[3]).
Both groups use available Web technology to display scenarios ranging in sophistica-
tion. However, none of them use standard UML diagrams to describe the algorithmic
concepts involved.

Visualization of concurrent programs is more complicated than visualization of se-
quential programs, due to the presence of multiple threads that communicate, compete
for resources, and periodically synchronize. The misunderstanding of concurrent pro-
grams behavior may result in unexpected interactions and non-deterministic execu-
tions. Some visualization tools have been realized to overcome these issues. In the
Gthreads library [16), a program graph is built as threads are forked and functions are
called, where the vertices of the graph represent program entities and events, while
the arcs represent temporal orderings between them. Message passing views are sup-
ported by the Conch system [17] where processes appear outside of a ring and mes-
sages are exchanged among them by traversing the ring. In this way undelivered mes-
sages can be detected, as they remain within the ring. The Hence system [16] offers
animated views of the program graph obtained from execution of PVM programs.
Once again, none of them use standard UML diagrams to describe process interac-
tions.

There are also currently available a number of CASE (Computer Aided Software
Engineering) tools that facilitates the edition of UML diagrams. However, once cre-
ated the diagrams, there are no means to completely transform the model into an ex-
ecutable program code whose results can in turn be visualized in the diagrams (Argo
UML[9], Rational Rose[12], Magic Draw). Despite the fact that Flash from Macro-
media has been largely used in Web-based applications, it does not conform to the
WWW standards. After recognizing the benefits of using vector graphics, the WWW
consortium launched an initiative to define the SVG (Scalable Vector Graphics) dia-
lect of XML [8]. However, both SVG and UML have independently been defined in
separate standardization efforts.

3 The Visual Programming Environment Moon

With the aim of constructing a programming environment for a direct visualization,

we advocate to the design of the main modules of the environment:

e UML sequence diagram editor intended to verify that the UML diagram is well
formed, producing in such case meta-data about the model. It is built upon the
available Internet browsers and enabled by Adobe SVG plug-ins by means of
scripting.

e Front-end compiler intended to translate UML diagrams into ADM rules, as ex-
plained in section 5. From the meta-data produced by the editor, the front-end
compiler uses translation schemes to transform the graphic and textual annotations
of the UML sequence diagram into the constructs of the ADM rule language.

e Back-end compiler aimed to translate ADM rules into Java programs. ADM rules
are transformed into executable Java programs according to the intended meaning
of the model.
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e Run-time mediator aimed to coordinate program execution with the diagram editor
The mediator consists of a minimal coordination and communication inﬁ'astrucmn;
between the viewer layer and the run-time JVM that executes the program. During
the program execution, the mediator synchronizes both layers to exchange mes-
sages containing the data produced by the running program and by the user interac-
tions received through the viewer.

e Program viewer intended to display program execution as UML diagrams. The
viewer receives the incoming data and transforms them into SVG graphical ele-
ments to be rendered in the Web browser.

The relationships among the components are shown in Fig. 1.
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Fig. 1. Architecture of the Moon programing environment

The graphical editor, written in JavaScript, transforms the elements of the UML se-
quence diagram into SVG elements. Being an XML dialect, the SVG representation
of diagram brings in the available standard tools (SAX or DOM-based) to store them -
in a stable storage or transfer them through a network. In particular, a DOM API is
used to compile de diagrams into ADM rules by means of XML transformations. Fi

2 shows a view of the UML editor. i
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Fig. 2. Moon Programming Environment

'I‘.he Moon programming envi_ronment is organized in four panes: action buttons, class
diagram editing, sequence diagram editing, and ADM code generation. The ;ction
button pane contains cor_ltrol buttons for introducing the graphical eleme:nts for each
element of the language into the class diagram and the sequence diagram panes
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A typical session in the Moon programming environment follows a three-phase cy-
cle: graphical edition, code generation and program execution. Graphical edition be-
gins by placing the classes of all participants in the class diagram pane, whose in-
stances are in turn placed in the sequence diagram pane. Then, the interactions and
collaborations of participants are edited according to their roles and the intended be-
havior of the system. Code generation begins after concluding the edition phase: the
UML diagrams produced are compiled into ADM rules according to the translation
schemes explained in section 4. Then, a ®n-calculus specification is generated from the
ADM rules produced. The w-calculus specification is interpreted upon a virtual ma-
chine written in Java. The program execution phase is responsible of running the pro-
gram on the coordination infrastructure provided by the virtual machine. During the
program execution, the mediator helps to show the results back into the UML dia-
grams edited. The programming session may repeat this cycle until the program speci-
fication can be visually validated from the UML diagrams.

In the next section, we describe the three forms of representation used in the envi-
ronment along with the translation schemes that related them.

4 Visual and Textual Forms of the Programming Language

Sequence diagrams describe the behavior of a system developed by the interaction of
the participants. These diagrams contain objects (classes) that exchange messages ar-
ranged in a time sequence. They are defined by identifying the following elements

[15]:

1. Class roles, denoted by rectangles surrounding the role-name and the class-name,
specify the type of objects that may participate with interactions and collaborations

2. Lifelines, denoted by vertical dashed lines, represent the existence of class roles
over a period of time, since the object is created until it is destroyed. They may
split into two or more concurrent lifelines to show concurrency or conditionality,
each lifeline corresponding to a thread or a conditional branch and they may merge
together at some subsequent point.

3. Activations, denoted by thin vertical rectangles arranged along lifelines, represent
the time during which a class role is performing an action (operation) or when it is
active and has focus of control.

4. Messages, denoted by labeled horizontal arrows between lifelines, define the in-
formation content of a communication that is exchanged in interactions and col-
laborations. The message instance has a sender, a receiver and possibly other in-
formation according to the characteristics of the request. Messages may be either
synchronous (solid arrow heads), with explicit or implied return (stick arrow
heads), or asynchronous (half stick arrow heads).

A concurrent programming model provides meaning to the graphical elements of a

UML sequence diagram by means of the notion of process. Process represent inde-

pendent threads of control, each of which executes sequential code [14]. A process is

an active object that in addition of developing its own behavior (by executing its
code), it may provide services to other objects by accepting calls to the methods the
active object offers. Processes can be created dynamically and can communicate with
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each other by means of a variety -of mechanisms: message passing, local and remote

method calls and rendezvous.
In the textual form of the programming language, a process is described by the ab-

stract syntax shown in Fig. 3.The figure consists of a three-column table that relates a
UML diagram fragment with the corresponding ADM rule and nt-calculus expression.

: P T b e e
W e e gt R b Bak A

<var name="bH"> b : B(ay,...,an)
lz] <new> (create and initialize ob-
U‘ ) <B> ject b of class B)
: ; <pl>a; </pl>...
) ﬂ </B>
! </new>
</var>
sto
A <stop/= (cegse object activity)
i
X
<send to="b"> b ! op(ay,...,a,)
[E <op> (send message op to ob-
— <pl> a; </pl>... jectaddressb)
-dGJ_‘nﬂL—p </0p>
i </send>
<call to="b"> b ! op(a,...,an);
- <op> b?r
’ <pl> a; </pl>... (send message op to ob-
[] oplat,...an) </op> ject b, then wait for re-
al
S P /call> sponse to be bound to r)
ﬂ( <receive from="bH">
¢ r
</receive>
<receive from="a"> a?op(ai,..,an)
b:B <op> (receive message op at
T <pl> a; </pl>... object b)
op(at,.a) 4 </op>
"ﬂ eV . /receive>
<reply to="a"> alr
b8 <ress> (send response back to
] <pl> r </pl>... the caller process and re-
<,.-_'9(clf_m1---“,w., </res> sume execution)
H </reply>
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<return to="a">
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<rule>
<on> E </on>
<if> C </if>
<do> A </do>
</rule>

b?E,C; A

(after receiving message
E, test if its contents satis-
fies condition C and if it
does, perform action 4;
otherwise, abort)

Fig. 3. Textual and graphical language constructs.

The ECA rules generated from the editor are then compiled into a Java program.
The code is generated according to the following programming model that describes
in a precise and unambiguous manner, the meaning of each programming notion.

5 Programming Model

The programming model provides meaning to the syntactical constructs shown be-
fore. It is inspired in the w-calculus[13] whose abstract syntax is shown in Fig. 4. The
operational semantics of the programming model is presented in this section by means
of transition rules.

P

Stop
Abort
c?x
cly
new ¢
Py P,
Py| P,
P+ P,

normal process termination

abnormal process termination

receive from channel ¢ a value to be bound to x
send value v through channel ¢

create an unique channel named ¢

perform P, and upon its termination perform P,
perform concurrently P, and P,

perform only one of P, or P,

Fig. 4. Abstract syntax of process expressions in the n-calculus
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As in the mt-calculus, a notion of address space is rendered by a collection of proc-
ess accessed through dynamically created channels. Thus a channel identify uniquely
a process instance (address of an active object) and can be used as the unidirectional
communication medium through which the process instance receives requests for the

operations it supports and sends back the responses. _
Process definition. Processes are defined by means of equations. In the programming

language, a typical process definition has the form P(c,v) = E, where P is the class
constructor with communication channel ¢, list v of initial values and process expres-
sion E describing the object behavior. For example, a typical process definition is:

P(c,v) = c?my(x); Prt+ ...+ c?mi(xy); Px

where ¢ denotes the address of the process instance and v denotes the (possibly
empty) list of initial values of the instance. The rlght-hfmd side displays the set of k
methods that the process supports. Method ¢?my(x;); P; is called when message m{(x;)
is received at channel c. Method body P; is performed possibly retuming a message
as result of the invocation. ‘

Although process are defined by equations, in practice they are used as left to right
rewrite rules. However, we prefer to maintain the equational form of processes defini-
tions to clearly distinguish them from the transition rules of the operational semantics.
Process definitions are used in the instantiation of processes. However, in order to
avoid uncontrolled creation of process instances, they are created on demand when a
channel name is passed to the class constructor, as explained next.

Process creation. An instance of class A is created by sending a new communication

channel a to the class constructor:
a :A(v) = new a; Ala; a!m(v) | A7c*P(c,u)

P(c,v) = ctmy(x1);Py + ... + Imilxi); Py

In the left-hand side of this transition (a :4(v)), the channel name a is created as the
communication medium with the process instance. Name A denotes not only the class
name but also (by abuse of notation) the channel name where the class constructor ac-
cepts requests for creating a new instance with a list v of initial values.

In the right-hand side of the transition appears the n-calculus expression that actu-
ally creates the process instance. The channel a is created by the new operator (new
a), ensuring the uniqueness of a. Process creation uses the guarded form of the repli-
cation operator (i.e. A7a * P, where P represents the expression in parenthesis). Its
purpose is to repeatedly create an instance P[c/a] of P (obtained from the substitution
of ¢ by a in P) only after a channel name is received at the class constructor channel
A, according to the transition:

Ala[A?c* P Plcla]|A%c* P

As the transition shows, the guarded replication expression A?c * P is left unchanged
to create new instances. The parallel composition operator | (bar) denotes the concur-
rent execution of the process instances.
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Finally, the expression c?m,(x,);Pi[c/a] + ... + a?my(x,);Pi[c/a] consists of the sum
of k method definitions P,[c/a] guarded by the corresponding method invocation
(message reception) m{x;) containing a list x, of parameters. A sum of k processes de-
notes the selection of exactly one process for execution (after applying substitution
[c/a]). Method definition P,[c/a] is selected only after receiving method invocation
m(v) along with its parameter list v, according to the transition:

a'myv); Q| a?m\(x,); P\[c/a] + ... + a?m(x)); P|[c/a] + ... + a?my(x}); Pi[c/a]
Q/ Pcla, xiv]

Because data flows from sending a!m(v) to receiving a?m(x;) expressions, sums
are restricted to contain only receiving expressions to simplify program language de-
sign. It is important to remark that each process instance has its own copy of the
methods to guarantee that each instance evolves independently and that no conflict
may arise from the data they hold.

Variables. Processes in the same address space can communicate to each other by
sharing variables. Variables can be seen as processes that only accept operations get

and set to retrieve and modify, respectively, the value that a variable holds. In the
transition:

x :Variable(v) newx§ Variable'x ; x!set(v) | Variable?x *Var(x,z)

after creating name x (new x), the name is sent to the process constructor of class
Variable (Variable!x) and then its initial value is set to v (x!set(v)).

The guarded replication Variable?x *Var(x,z) creates variable Var(x,z), after re-
ceiving the channel name of a new variable at the process constructor (Variable?x).
Note that though the starting value z of a variable is always undefined, it is immedi-
ately replaced by the initial value v received from action x!ser(v).

The behavior of Var(x,v) is defined by equation:

Var(x,v) = x?gel(); x!v; Var(x,v) + x?set(y);,Var(x.y)

that precisely defines the methods that variables offer.

Fig. 5. Variable Example

Although, the Moon environment does not display the channel associated with the_ ob-
jects created, it is handled internally a made explicit in the process expressions. Fig. 5
shows a sequence of three screenshots taken from a Moon programming session of



262 Rivera de la Rosa M., Olmedo Aguirre O.

objects of classes 4 and C that interact with object Var(x,z). As shown in Fig. 5a, if
variable Var(x,z) receives message sef(a) from object 4, incoming value a is bound to
y and Var(x,z) becomes Var(x,a), holding new value a which will be used in further
requests. Fig. 5b shows how the Moon environment immediately updates the box of
the variable with the new value. Then, as shown in Fig 5c, when Var(x,z) receives
message get() at x from object C, a is returned to C, and then Var(x,v) behaves as be-
fore.

Method invocation and rendezvous. Though in a method invocation the caller proc-
ess and the called process may reside on the different machines, the called process
creates an attending process to execute the .method_ coc%e for the invocation, while the
caller is delayed for the response. Once the invocation 1s completed, the -caller process
resumes its execution, while the attending process 1S des.troyed.. According to this be-
havior, method definition begins receiving the message including the operation name
and its parameters and terminates before sending _the response back to the caller. The
following expression sketches the receive-send pair described:

P=c?mXx);M;clr+..

where, m is the method head and M is the method body. In the caller side, the com-
plementary pattem required consists of sending the requests and then waiting for the
response:

p=cim(v);c?x;..

There is some flexibility on the mechanisms offered in the way results are passed
back to the caller process. In the remote method invocation approach the attending
process is immediately destroyed after sending back the results:

P=c!m();c?x;stop

whereas the randezvous approach there is no attending process so, in general, it can-
not be destroyed.

Event-driven behavior. Simple ADM rules can be encoded in the m-calculus. Proc-
ess receiving messages invoking operations constitute basic events (E). Testing logi-
cal conditions upon message content, including equality, arithmetic relations and
usual logical connectives, correspond to condition checking (C), whereas sending
messages correspond to the actions performed (A). These three elements are com-
posed in the sequence b ? E; C; 4. When evaluated a condition, it is reduced either to
skip if the condition is true or to fail if the condition is false, determining the flow of
control in the process, according to the transitions:

skip; A A4 abort; 4 abort abort+A4 A

The last transition selects only one course of control among many possible if all of
them have mutually exclusive conditions. For example, in a sorting algorithm, a proc-
ess S(m, ¢, d) in a chain of processes always keeps the minimal value:
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S(m,c,d)=c?x;(x<m;d'm;S(x,c,d)+x"m;d! x; S(m, c, d))

Being both conditions x < m and x’ m, mutually exclusive, only one branch is se-
lected for execution.

6 Compiling Rules in the Programming Model

The table shown in Fig. 4 also shows the translation schemes used by the front-end
and back-end compilers. The front-end compiler translates UML diagrams into ADM
rules, whereas the back-end compiler translates ADM rules into n-calculus formal
specifications. So far, we have implemented a library of Java classes that conforms to
a subset of the m-calculus model of concurrency with the purpose of executing the
programs specified by the UML diagrams. The ADM programs are then compiled
into a semantically equivalent Java program that uses our r-calculus library to pro-
duce and executable version of the UML diagrams provided.

7 Conclusions

In this paper, the Moon visual programming environment was presented. The envi-
ronment facilitates the design, analysis and construction of UML sequence diagrams.
The environment uses the ADM rule-based language as a textual representation for
the diagrams provided, that are amenable for execution due to the well-defined se-
mantics of the language constructs. Among the contributions of this work, we empha-
size the m-calculus foundation of the ADM syntactic constructs which reduces the
complexity of rule-based descriptions by introducing structuring notions of object en-
capsulation, sequential, paralle] and conditional composition of simpler rules. We
foresee a number of applications ranging from algorithmic visualization, UML-based
system design and program development. We also believe that Moon will provide the
means for preparing educational material of distributed computing courses centered
on standard UML diagrams and rule-based reasoning.
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