
Visual Programming Environment for ECA Rules

Mónica Rivera de la Rosa, Oscar Olmedo Aguirre

Computer Science Section, Department of Electrical Engineering, Cinvestav
Av Instituto Politécnico Nacional 2508 México 07360 D. F.

mrivera@computacion.cs.cinvestav.mx, oolmedo@delta.cs.cinvestav.mx

Abstract. System software practitioners have largely recognized the difficulties
of specifying complex program behavior in the design of distributed systems. In
this paper, we present Moon, an experimental programming environment that

uses UML sequence diagrams to describe and integrate the ECA rules that gov-

ern distributed systems behavior. The programming environment provides the
means to interactively describe ECA rules and to visualize their effect. The

rules are compiled into common concurrent programming abstractions includ-

ing basic (i.e. send and receive) and structured (i.e. sequence and parallel) con-
structs to facilitate program execution and visualization. Among the contribu-
tions of this work, we emphasize the n-calculus foundation of the UML

sequence diagrams which reduces the complexity of rule-based descriptions by
introducing structuring notions of object encapsulation, sequential, parallel and
conditional composition of simpler rules. We also believe that Moon may pro-

vide the means to develop applications ranging from algorithmic visualization,

UML-based system development and also to prepare educational material of

computer science courses centered on standard UML diagrams and rule-based
reasoning

Keywords. UML, Visual Programming, Rule-based Programming, Program-

ming Environment

1 Introduction

The design and construction of concurrent programs in a distributed setting has been
largely recognized a complex undertaking. In this respect, rule-based programming
has been proposed to better our understanding of complex program behavior. Rule-

based specifications are used in reactive systems that are monitored for the occurrence

of events that may signal critical conditions. In rule-based systems, once an event is

detected, if the event parameters satisfy a condition, a specified action is performed to

handle the situation. The language construct that corresponds to this model of interac-

tion is called ECA-rule. The use of ECA-rules in distributed systems arise from the

fact that a distributed system is a reactive system whose behavior can be conducted by
the messages received (events) and by the messages sent as response (actions). ECA-

rules are the basis of ADM, an Active-Deductive Model that uses XML as data repre-

sentation and message exchange format in distributed applications [11]. ADM is a

A. Gelbukh, C. Yáñez Márquez, O. Camacho Nieto (Eds.)

Advances in Artificial Intelligence and Computer Science

Research on Computing Science 14, 2005, pp. 253-264





















Visual Programming Environment for ECA Rules

S(m, c, d) =c?x; (x<m; d! m; S(x, c, d) + x' m; d! x; S(m, c, d))

263

Being both conditionsx <m and x'm, mutually exclusive, only one branch is se-
lected for execution.

6 Compiling Rules in the Programming Model

The table shown in Fig. 4 also shows the translation schemes used by the front-end
and back-end compilers. The front-end compiler translates UML diagrams into ADM
rules, whereas the back-end compiler translates ADM rules into n-calculus formal
specifications. So far, we have implemented a library of Java classes that conforms to

a subset of the n-calculus model of concurrency with the purpose of executing the
programs specified by the UML diagrams. The ADM programs are then compiled
into a semantically equivalent Java program that uses our n-calculus library to pro-
duce and executable version of the UML diagrams provided.

7 Conclusions

In this paper, the Moon visual programming environment was presented. The envi-
ronment facilitates the design, analysis and construction of UML sequence diagrams.
The environment uses the ADM rule-based language as a textual representation for
the diagrams provided, that are amenable for execution due to the well-defined se-
mantics of the language constructs. Among the contributions of this work, we empha-
size the n-calculus foundation of the ADM syntactic constructs which reduces the
complexity of rule-based descriptions by introducing structuring notions of object en-
capsulation, sequential, parallel and conditional composition of simpler rules. We
foresee a number of applications ranging from algorithmic visualization, UML-based
system design and program development. We also believe that Moon will provide the
means for preparing educational material of distributed computing courses centered
on standard UML diagrams and rule-based reasoning.

References

1. B.A. Colombo, C. Demetrescu, I. Finocchi, and L. Laura. "A Java-based System
for Building Animated Presentations over the Web", Journal paper accepted for
publication in Elsevier Science of Computer Programming (SCP), special issue on
"Practice and Experience with Java in Education". An extended abstract appears in
the Proceedings of the AICCSA'03 Workshop on Practice and Experience with
Java Programming in Education, Tunis (July 2003)



264 Rivera de la Rosa M., Olmedo Aguirre O.

2. Baker, R., M. Boilen, M. Goodrich, R. Tamassia, and B. Stibel. "Testers and Visu-

alizers for Teaching Data Structures", In Proc. 1999 ACM SIGCSE Symp., АСM

(1999) 261-265
3. Dann, W., Cooper, S., Pausch, R. "Making the connection: programming with ani-

mated small world", in Proceedings of the Conference Integrating Technology into

Computer Science Education, (2000) 41-44

4. Thomas L. Naps, Guido Rößling. "Evaluating the Educational Impact o
f Visualiza-

tion". inroads - Paving the Way Towards Excellence in Computing Education, vol-

ume 35, Number 4. pp. 124-136, ACM Press, New York (2003)

5. R. Fleischer and L. Kucera. "Algorithm animation f
or teaching". In Software Visu-

alization, State-of-the-Art Survey, Stephan Die
hl (ed.). Springer LNCS 2269

(2002) 113-128

6. Hansen, S. R., Narayanan N.H. & Hegarty, M. "Designing educationally effective

algorithm visualizations"., Inl. of Visual Languages and Computing (2002) 291-

317.

7. G. Booch, J Rumbaugh, I. Jacobson. "The 
Unified Modeling Language User

Guide". Addison Wesley Longman Inc. (2000)

8. C. Lilley, D. Jackso. "Scalable Vector Graphics (SV
G) XML Graphics for the

Web". http://www.w3.org/Graphics/SVG/, W3C (2004)

9. ArgoUML Quick Guide.http://argouml.tigris.org/documentation/defaulthtml/quick-

guide/index.html, Tigris org (2004)

10. L. Quinn. "Extensible Markup Language (XML)". http://www.w3.org/XML/, W3,

2004

11. O. Olmedo, K. Escobar, G. Alor, G. Morales. "ADM: An Active Deductive XML

Database System", Springer, LNAI 2972:139-148 (2004)

12. "Rational Rose XDE Developer"

http://www-306.ibm.com/software/awdtools/devel
oper/rosexde/features/ IBM (2004)

13. R. Milner, Communicating and mobile systems: the" calculus. Cambridge Univer-

sity Press (1999)

14. G. Andrews, "The distributed programming language SR-mechanisms, design and

implementation". Software-Practice and Experience 12,8:719-754 (1992)

15. Sinan Si Alhir, UML in a nutshell. A desktop quick reference. O'Reilly (1998)

16. A. Begeulin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Graphical de-

velopment tools for network-based concurrent supercomputing. In Proceedings of

Supercomputing'91 (1991) 435-444
17. B. Topol, J. Stasko and V. Sunderam. Integrating visualization support into dis-

tributed computing systems. In Proceedings of the 15-th International Conference

on Distributed Computing Systems (1995) 19-26


